Nintendo audio played by player piano and robotic percussion

YouTube: Nintendo audio played by player piano and robotic percussion (via Superlevel)

Ein bisschen wie im Stummfilmkino. Nur mit Games. Und Robotern:

This system allows for Nintendo gameplay audio to be played through an acoustic player piano and robotically controlled percussive instruments. The piano and percussion play live during actual gameplay, mirroring the sounds that would normally be created electronically. All audio, including music and sound effects, is translated in realtime so that it is produced by the instrument most closely resembling the characteristics of the original electronic sound.

Ein Parkour Roboter namens RHex

YouTube: RHex the Parkour Robot (via IEEE Spectrum)

Ich glaube, ich hab mich gerade ein bisschen verliebt. RHex ist ein Projekt von Aaron M. Johnson und D. E. Koditschek von der University of Pennsylvania.

RHex is an all-terrain walking robot that could one day climb over rubble in a rescue mission or cross the desert with environmental sensors strapped to its back. Pronounced “Rex,” like the over-excited puppy it resembles when it is bounding over the ground, RHex is short for “robot hexapod,” a name that stems from its six springy legs. Legs have an advantage over wheels when it comes to rough terrain, but the articulated legs often found on walking robots require complex, specialized instructions for each moving part. To get the most mobility out of RHex’s simple, one-jointed legs, Penn researchers are essentially teaching the robot Parkour. Taking inspiration from human free-runners, the team is showing the robot how to manipulate its body in creative ways to get around all sorts of obstacles… A Robot That Jumps, Flips, and Does Pull-ups

Schlangen-Roboter umschlingt Dinge bei Kontakt


YouTube: Snake Robot Perching (via Automaton)

Sich bei der Robocalypse auf einem Baum zu verstecken, ist schon länger keine Option mehr. Insofern verschlechtert sich die Gesamtsituation durch das neuste Update für den modularen Schlangen-Bot vom Biorobotics Laboratory nur marginal. In freier Wildbahn will ich ihm trotzdem lieber nicht begegnen.

Using the accelerometers inside each module of the snake robot we are able to detect when the robot hits a pole or branch after being thrown and have the robot automatically perch on contact. This work is supported by the Army Research Lab’s Robotics Collaborative Technology Alliance (RCTA).

Salamandra robotica II – Robo-Lurchi aus der Schweiz


YouTube: Salamandra Robotica II Robot Walking and Swimming (via technabob)

Ein Robo-Lurchi aus der Schweiz, dessen Bewegungsapparat über ein neuronales Netz in seinem „Rückenmark“ gesteuert wird. Entwickelt wurde der Salamandra robotica II im Biorobotics Laboratory der Eidgenössischen Technischen Hochschule Lausanne. Mir persönlich lieber, als das durchgeknallte Maultier neulich…

Compared to its predecessor Salamandra robotica, the new robot swims more than twice as fast, is equiped with foldable limbs, and embarks more powerful microcontrollers that allow distributed computation of our models of spinal cord neural networks as well as the simulation of muscle properties. It is one of the few robots, if not the only one, that can swim, crawl, and walk. Its modular design allow us to rapidly change its morphology (e.g. make it longer, add or remove legs, etc.). Also its modularity means that each module has its own microcontroller, battery, and motors, and therefore we can split the robot in different parts and it would still work. This can have interesting implications in terms of robustness against damage. For instance, the robot could loose parts of its body and still be able to walk … The primary purpose of this robot is to serve as a scientific tool to test hypotheses about the neural circuits underlying locomotion in the spinal cord of vertebrate animals. For this, we work with neurobiologists … and make models of the central pattern generators that are known to control locomotion in vertebrate animals. These sophisticated circuits can produce complex locomotor patterns while receiving only simple command signals from upper parts of the brain.

Schuhe schnüren mit einer bionischen Roboter-Hand

YouTube:Terminator-like carbon fibre mechanical hand (via PopSci)

Ich hab nur eine ungefähre Ahnung, was bei Prothesen aktueller Stand der Technik ist, bin mir aber trotzdem ziemlich sicher, dass die bionische Roboter-Hand im Video ziemlich weit vorn liegt.

A father who was given a high-tech bionic hand after losing his arm in an accident six years ago yesterday claimed he can now tie his shoe laces again. Nigel Ackland, 53, was fitted with the Terminator-like carbon fibre mechanical hand which he can control with movements in his upper arm in November last year. The bebionic3 myoelectric (double corr) hand, which is also made from aluminium and alloy knuckles, moves like a real human limb by responding to Nigel’s muscle twitches. Incredibly, the robotic arm is so sensitive it means Nigel can touch type on a computer keyboard, peel vegetables, and even dress himself for the first time in six years.

Laufroboter BigDog kann jetzt Beton-Blöcke werfen

YouTube: Dynamic Robot Manipulation (via Automaton: IEEE Spectrum)

Boston Dynamics haben dem kopflosen BigDog, ihrem besten Robo-Maultier im Stall, einen riesigen Wurfarm verpasst, mit dem der Bot Betonschalstein schleudern kann. Wenn die Roboter eines Tages auf die Straße gehen und sich gegen die Menscheit erheben, werden die in ihrem Lab die Sache mit dem Upgrade noch bitter bereuen.

BigDog handles heavy objects. The goal is to use the strength of the legs and torso to help power motions of the arm. This sort of dynamic, whole-body approach is routinely used by human athletes and animals, and will enhance the performance of advanced robots. The control techniques and actuators needed for dynamic manipulation are being developed by Boston Dynamics with funding from the Army Research Laboratory’s RCTA program.